Accelerator Physics and Commissioning

M. Syphers

LARP Collab Mtg April 05

Agenda

- Wednesday PM
 - Report from CERN
 - Toohig Fellowship Discussion
 - Commissioning Task Force Discussion
 - Instrumentation Commissioning Discussion
- Thursday AM
 - Hardware and IR Commissioning Discussion
- Thursday PM
 - Accelerator Physics Reports

Wed Afternoon

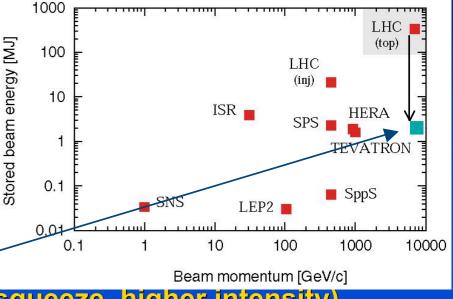
- Reports from CERN
 - R. Bailey, M. Lamont
- Toohig Fellowship Discussion
 - P. Limon
- Commissioning Task Force Discussion
 - V. Shiltsev
- Instrumentation Commissioning Discussion
 - Joint session with Beam Instrumentation

Proposal for early proton running

Phase I collimators and partial beam dump

Pilot physics run with few bunches

- No parasitic bunch crossings
- Machine de-bugging no crossing angle
- 43 bunches, unsqueezed, low intensity
- Push performance (156 bunches, partial squeeze, higher intensity)


- Establish multi-bunch operation
- Relaxed machine parameters (squeeze and crossing angle)
- Push squeeze and crossing angle

25ns operation with Phase I collimators + partial beam dump

Needs scrubbing for higher intensities (i_b > 3 10¹⁰)

Phase II collimators and full beam dump 25ns operation

Push towards nominal performance

Accelerator Systems and Responsibilities 1

	System		Equipment Group	Beam Physics or Operational aspects			
	Control system						
	Applications software						
		TI operations					
Systems	Accelerator technical services	Electrical supply	We _	No or			
tem		Cooling & Ventilation					
	Vacuum		+ know -	very			
needed	Cryogenics		who	few			
d pre	Access		these	names			
e b	Cold magnets						
beam	Warm magnets		are	here			
	Magnet circuits and power co	nverters					
	Power Interlock System (PIC)						
	Quench Protection and Energy	y Extraction (QPS)					

This is the meat of Hardware Commissioning

R,Bailey, LARP, April 2005

Accelerator Systems and Responsibilities 1

		System			_		Equipment	Beam P	hysics or Opera	tional				
		Control system Applications sof			Accelerator Systems and Responsibilities 2									
	Systems	Accelerator tecl services			System				Equipment Group	Beam aspec	Physics or Opera ts	tional		
		Vacuum			SPS extraction, transfer	r, injection	and first turn							
	needed	Cryogenics			Multi turn losses and BIS dependability									
		Access			Protection devices other than collimators									
	pre t	Cold magnets			Collimation system and Halo cleaning									
	beam	Warm magnets			Clean Beam Extraction				- We		- CERN			
	n	Magnet circuits		S	Radio protection	Screens		know			AP	_		
		Power Interlock		Systems		BCTs			who		interest			
		Quench Protect				BPM, tra	jectory & orbit corre	ection	ion					
_				neede	Beam Instrumentation	BLM	-		these		known			
				ded for beam		PLL for C	Q, Q', coupling		are		here			
						Profile m	nonitors		arc		- HCI C			
						Schottky	,							
						Luminos	ity monitors							

Vacuum conditions during operation and electron cloud

RF systems and longitudinal beam dynamics

Experimental solenoids and compensations

Reference magnet system

Transverse feedback

Experimental equipment (Roman pots, velo) R,Bailey, LARP, April 2005

Accelerator Systems and Responsibilities 1

	System						Equipment	Beam P	hysics or Operat	tional					
	Control system Applications sof		Accel	era	ato	or Systems and Responsibilities 2									
Systems	Accelerator tecl services			System					Equipment Group	Beam Paspects	hysics or Opera	ational			
	Vacuum			SPS extraction, t											
ede	Cryogenics			Multi turn losses	Accelerator System				ns ar	and Responsibilities 3					
needed pre	Access				Protection device										
	Cold magnets			Clean Boom Extr											
beam	Warm magnets			Clean Beam Extra Radio protection			System				Equipment Group		Beam Physics or Operational aspects		
5	Magnet circuits	-	S	Radio protection			Beam in the injectors				Group	aspec	ts		
	Power Interlock		Systems				Ion beam in the injectors								
	Quench Protecti						Orbit feedback system								
			nee				Filling efficiency and flat bottom conditions								
	- In		needed	Beam Instrument	t		Ramp and squeeze losses and overall quality			No or		CERN			
			for				Machine protection system			_		AP			
			· beam			Beam	Optics			very					
			am			E	Mechanical aperture			few		interest			
	Vacuum conditio Reference magne Dy Ma				Machine Impedance a	Machine Impedance and collective instabilities			names		- known				
	RF systems and I					Dynamic aperture									
							Lattice corrector settings			here		here			
	Experimental sol			<u> </u>	Triplet corrector settings										
								Lifetimes							
				Experimental equ				Separation schemes							
Co						Crossing angle schemes									
				Collisions and luminosity steering											
. ^s^ . v a s (v) i to /s 4 . 3 i et i et i et i i i i i i i i i i i i					Experimental conditions lons										

Toohig Fellowships in Accelerator Science at the LHC

The U.S. LHC Accelerator Research Program offers fellowships to recent PhDs in science or engineering to participate in LHC commissioning and other accelerator science and technology efforts relevant to the LHC.

Toohig Fellowships last a minimum of two years, possibly extendible to three, with approximately equal time spent at CERN and a U.S. DOE laboratory, either BNL, FNAL, LBNL, or SLAC.

Send a resume or contact Peter Limon (pjlimon@fnal.gov) or Steve Peggs (peggs@bnl.gov)

Find LARP information at http://www.rhichome.bnl.gov/LARP

Dr. Timothy Toohig, SJ, was a physicist and Jesuit priest who devoted his life to increasing understanding among scientists of all nations and religions.

Discussion led by Peter Limon

Questions & Comments

- Attract bright young people to accelerator science
- Foster international exchange.
 - Visa problems (aaargh!)
- Form committee to select a candidate before end of CY2005. Who on committee? Interviews? Seminar? If so, where? Video?
- How rigid a selection?
- Deadline for poster May 1; Physics Today & Courier WSJ, Le Monde, by June 30; PAC poster/booth?
- Supervision? How? Where? What is the role?
 - Pairing postdoc with senior person
 - Which lab? Related or not to topic?
 - Finding job at end of term
 - Do we select supervisor?
- Salary: straightforward to pay in the US at CERN? will they get "Project Assoc Status and extra \$\$? should they be paid more than "normal" (to attract brightest?)

LARP is a U.S. DOE program, and is an equal opportunity employer

Commissioning Task Force --Shiltsev

US Long Term Commissioning Visits FTEs

(IR,Installation,Cmss'ng)

Hardware Commising

Laboratory "realistic" → extended

Beam Commiss'g
"realistic" → extended

Fermilab $4 \rightarrow 11.5$

Brookhaven $0 \rightarrow 0$

Berkeley $1 \rightarrow 1 + 2^*$

SLAC $0 \rightarrow 0$

6 → 15

 $0 \rightarrow 2 + 1^*$

 $1* \rightarrow 2 + 1*$

 $? \rightarrow 1?$

TOTAL

5 → 14.5

 $7 \rightarrow 22$

 Gaining understanding of needs, and of possibilities, including "Project Associates"

- working on listing possible people, tasks
- desire to see "the letter" arrive soon...

^{*} means the person have to be hired

Commissioning Task Force --Shiltsev

US Long Term Commissioning Visits

Hardware Con

Laboratory "realistic" → ex

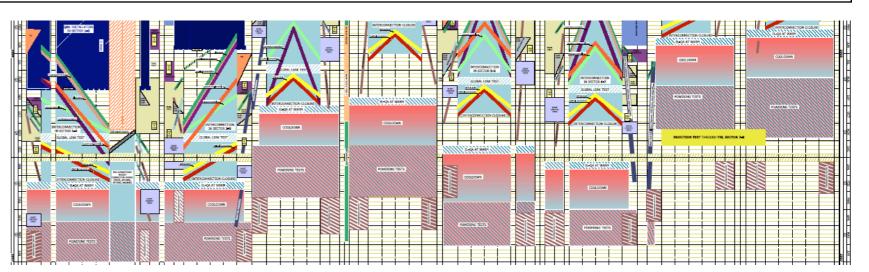
Fermilab	4 -> 11
Brookhaven	0 -> 0
Berkeley	1 -> 1
SLAC	0 → 0

^{*} means the person have to be hir

6 April 2005 LHC Commissio

General Conclusions

- Recently formed CTF is functioning
- Preliminary investigations show that US labs can provide 1/9 to 1/3 of the man-power missed (and needed) for the LHC installation and hardware commissioning and ½ to 100% of personnel LARP want to employ in the beam commissioning.
- Organization of the US contribution to the LHC commissioning has to be energized, and the CTF is forming recommendations on that subject
- We are in a good shape to present a comprehensive report in July'05


Thu Morning

- Status & Schedule of LHC Hardware Comm. at CERN
 - R. Saban
- DFBX and Absorber commissioning
 - J. Rasson
- Separation Dipole Commissioning
 - P. Wanderer
- Quadrupole Commissioning & IR Above ground Fitup
 - M. Lamm
- Remote Monitoring for Hardware and Beam Commissioning
 - © E. Harms
- Discussion: US Hardware commissioning participation

Status and Schedule from CERN (Saban)

 Useful tutorial on reading General Coordination Schedule!

Other issues:

Discussed in detail HC schedule and plans

- a) Short term LSS8 (Winter 2005-6)
- b) Sector 7-8 and 8-1 (second half of CY06)
- c) Commissioning around remaining "even" IP's Experience from "a)" and "b)" will guide "c)"
- Discussion of 1-year "Project Associate"
- Identified most needed personnel resources


Installation and HC Activities

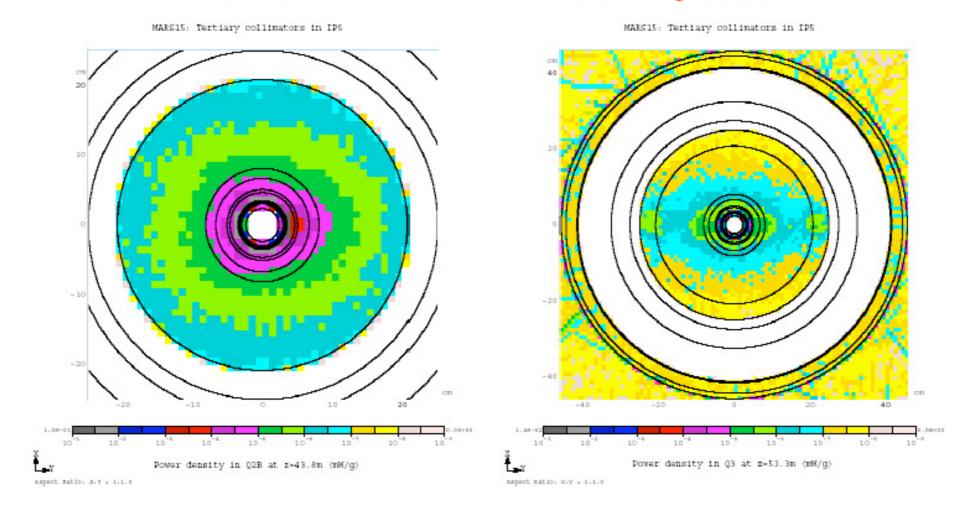
◆ DFBX

- Busy device which will require some care and feeding even after CERN Delivery
- Delivery and acceptance going well
- Quadrupoles and plans for IR commissioning
 - Quad deliveries completed by end of CY05
 - Lined up 2 suitbable "long stay" IR commissioners
- BNL Dipoles
 - All complete, most shipped
 - Installation and Commissioning deemed fairly straight forward...
- Remote monitoring
 - Should be very useful tool for monitoring beam line commissioning
 - HC may be better served with Electronic log book and quench data base

LHC Assembly Building March 2004

- Inner Triplet Fitup Ongoing
 - Alignment Tests of Q2 Element
- DFBX Acceptance
- March 14-March 24th
- Participants: Joseph Rasson (LBNL), Phil Pfund, Tom Page, Tom Nicol, Jim Rife, Michael Lamm (FNAL)
 - Q1,Q2, D1 already on magnet stands
 - Q3 acceptane, place on magnet stand
 - Complete Q1-Q2, Q2-Q3 interconnect
 - Complete DFBX acceptance tests
- April 12-22 Finish Fitup
- May-June Prepare for Installation

Round Table Discussion


- Very Interesting discussion. For e.g., shared experiences about past hardware commissionings and experiences about living/working at CERN.
- Other discussions centered around the role of the LARP participation in LHC HC. Some of the issues addressed:
 - Where are the ~100 extra people coming from??
 - Not all identified!
 - Teams from Europe and elsewhere, including technicians to perform a specific task
 - US contribution is small in numbers; commissioners would be integrated in CERN groups and HC teams
 - Clarrification and rationale of the Project Associate status
 - Applied to all long-term LARP visitors
 - Importance of getting "the letter" from DG to US lab directors sent ASAP as a starting point for global commissioning

Thu Afternoon

- IR Energy Deposition Status report
 - N. Mokhov
- IR & Beam-Beam Status report
 - T. Sen
- Electron Cloud Status report
 - M. Furman
- 3D Electron Cloud Simulation
 - J-L. Vay

Tertiary collimators appear feasible.

POWER DENSITY IN TRIPLET QUADS

Peak power density of 0.35 mW/g occurs in the Q3 superconducting coils at z = 50 m (β_{max}). Therefore, the maximum "scraping rate" on the TCTV/TCTH couple is about 2×10^6 p/s.

Options for IR upgrade

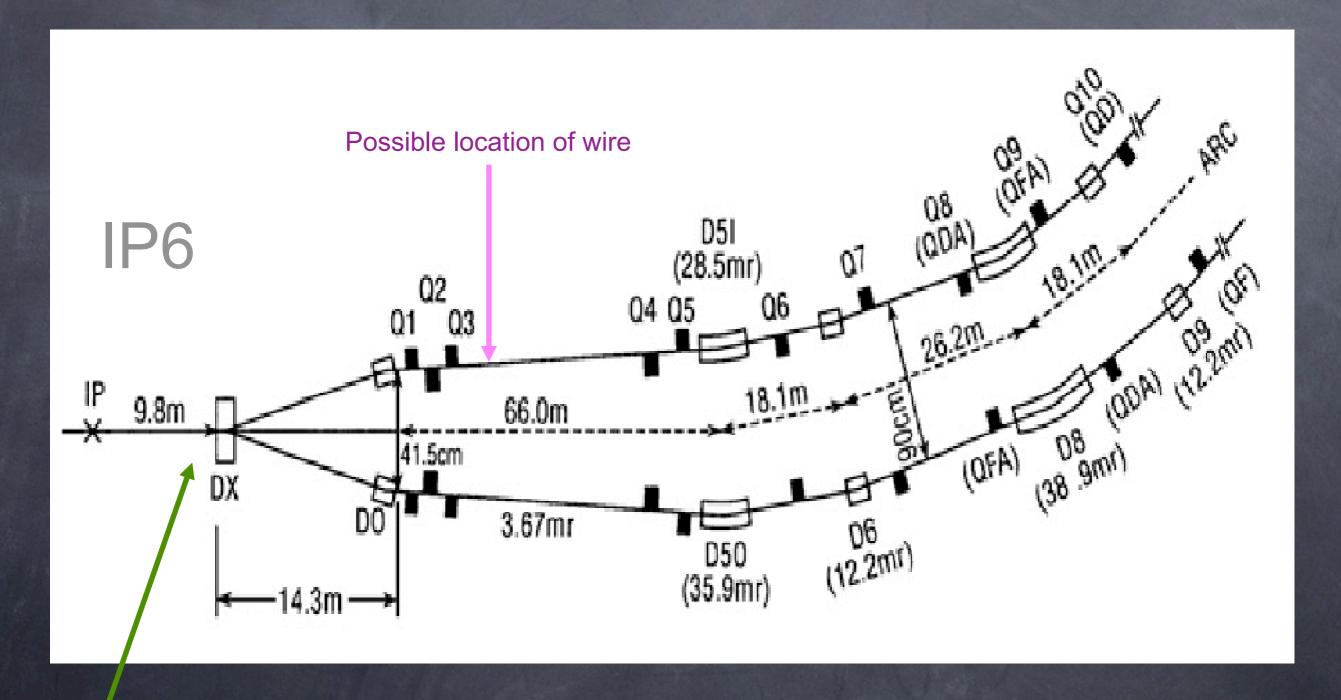
- Triplet first optics with $\beta^* = 0.25$ m
- Dipole first optics with $\beta^* = 0.28$ cm
 - Triplet focusing
 - Doublet focusing

Dipoles First - Matching

- Beams in separate focusing channels
- Triplet quads Q1 Q3 at fixed gradient = 200 T/m, exactly anti-symmetric
- Positions of all magnets kept the same polarities change w.r.t quadrupoles first optics
- Strengths of quads Q4 to Q10 < 200 T/m
- Trim quad strengths QT10 to QT13 < 150T/m
- Phase advances across IR are different could be tweaked
- Solution only at collision optics sufficient for magnet designers

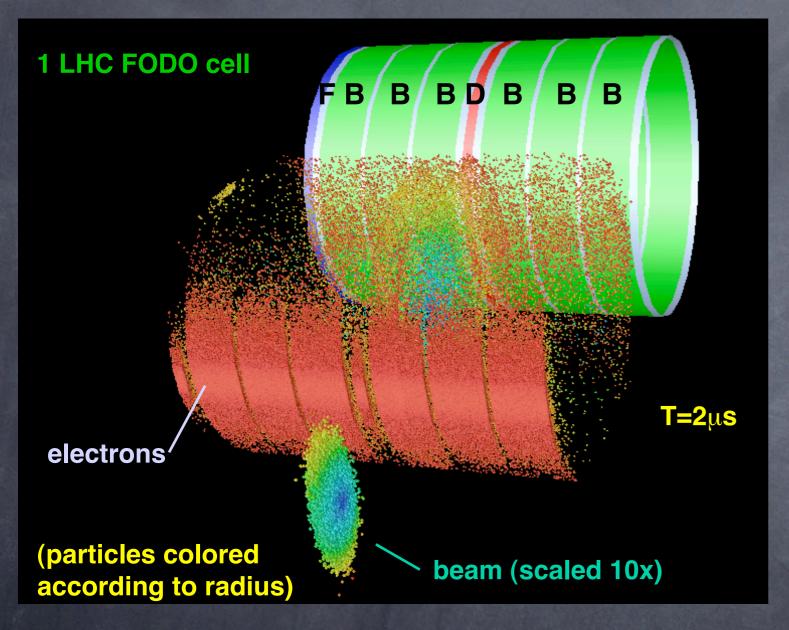
β Maximum in Quads

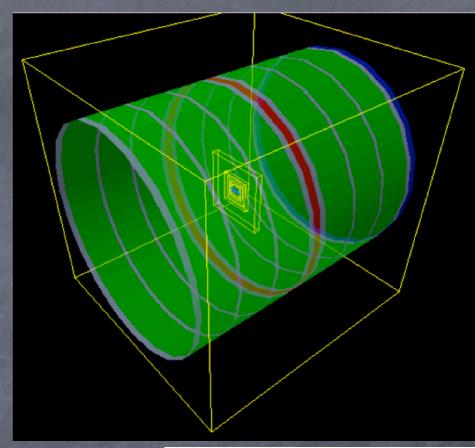
	Quads first	Dipoles first
	β ^{max} [m]	β ^{max} [m]
Q1	4538	15100
Q2	9193	23036
Q3	9427	22720
Q4	3323	12517
Q5	1559	8859
Q6	984	2791
Q7	285	748
Q8	261	2857
Q9	270	693
Q10	153	162
QT11	181	185
QT12	183	183
QT13	173	172


LARP Meeting Apr6-8, '05

IR and Beam-beam - T. Sen

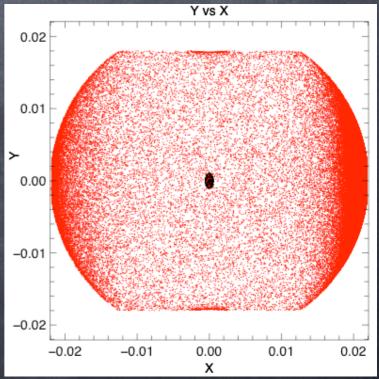
Magnet R&D challenges


- All designs put a premium on achieving very high field:
 - Maximizes quadrupole aperture for a given gradient.
 Separates the beams quickly in the dipole first IR
 bring quads as close as possible to the IP.
 Push B_{op} from 8 T -> 13~15 T in dipoles or at pole of quad => Nb₃Sn.
- All designs put a premium on large apertures:
 - Decreasing β^* increases β_{max} => quad aperture up to 110 mm?
 - Large beam offset at non-IP end of first dipole.
 Dipole horizontal aperture >130 mm.
- Energy deposition:
 - quench stability, cooling, radiation hard materials.
 - Nb₃Sn is favored for maximum field and temperature margin, but considerable R&D is required to master this technology.


RHIC may test long range beam-beam wire compensator

Parasitic interaction

M. Furman, J.-L. Vay: Application of a new 3D e-cloud code (WARP+POSINST) to LHC



AMR provides speedup of x20,000 on field solve

Movie...

(Jean-Luc Vay)

Comments/Conclusions

- Most of Session concerned with "commissioning"
- © CERN is firming up their commissioning scenario; lists of Task Leaders is shaping up, in progress
 - will begin inserting "real" LARP names ...
- Many at meeting appeared "concerned" about financial support for LARP commissioners
 - Project Associate position -- great help
 - Official "letter" will also help push DOE/US labs...
- Master Schedule -- can now interpret (Thanks, Roberto!)
- Making progress toward remote access of LHC data

Comments/Conclusions (cont'd)

- Commissioning Task Force on schedule to provide report, recommendations this summer
- Toohig Fellowships hopefully to be offered this year
 - Possibly more slots than candidates, at first;
 - however, must be "picky" about choices
- Good progress on future IR upgrade design issues
- Continued excellent progress on e-Cloud simulations
- AP-C now in better position to firm up upcoming budget (FTE) requests